Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Initial responses of the trap-crop, Solanum sisymbriifolium, to Globodera pallida invasions.

Identifieur interne : 000128 ( Main/Exploration ); précédent : 000127; suivant : 000129

Initial responses of the trap-crop, Solanum sisymbriifolium, to Globodera pallida invasions.

Auteurs : Alexander Q. Wixom [États-Unis] ; N Carol Casavant [États-Unis] ; Timothy J. Sonnen [États-Unis] ; Joseph C. Kuhl [États-Unis] ; Fangming Xiao [États-Unis] ; Louise-Marie Dandurand [États-Unis] ; Allan B. Caplan [États-Unis]

Source :

RBID : pubmed:33016605

Abstract

Many researchers today are looking for mechanisms underlying plant defenses against nematodes by identifying differentially expressed genes in domesticated hosts. In order to provide a different perspective, we analyzed the root transcriptome of an undomesticated non-host species, Solanum sisymbriifolium Lamark (SSI) before and after Globodera pallida infection. Utilizing RNAseq analyses, we identified changes in the expression of 277 transcripts. Many of these genes were not annotated; however, the annotated set included peroxidases, reactive oxygen species-producing proteins, and regulators of cell death. Importantly, 60% of the nematode-responsive genes did not respond to physical damage to root tissues, or to exogenous treatments with either salicylic acid or methyl jasmonate. Based on this, we speculate that the majority of changes in SSI gene expression were promoted by either nematode effectors, pathogen-associated molecular patterns (PAMPs), or by exposure to untested endogenous signaling molecules such as ethylene, or by exposure to multiple stimuli. This study incorporates our findings into a model that accounts for part of this plant's unusual resistance to nematodes.

DOI: 10.1002/tpg2.20016
PubMed: 33016605


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Initial responses of the trap-crop, Solanum sisymbriifolium, to Globodera pallida invasions.</title>
<author>
<name sortKey="Wixom, Alexander Q" sort="Wixom, Alexander Q" uniqKey="Wixom A" first="Alexander Q" last="Wixom">Alexander Q. Wixom</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333</wicri:regionArea>
<wicri:noRegion>83844-2333</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Casavant, N Carol" sort="Casavant, N Carol" uniqKey="Casavant N" first="N Carol" last="Casavant">N Carol Casavant</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333</wicri:regionArea>
<wicri:noRegion>83844-2333</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sonnen, Timothy J" sort="Sonnen, Timothy J" uniqKey="Sonnen T" first="Timothy J" last="Sonnen">Timothy J. Sonnen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science, Moscow, ID, 83844-1010, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Moscow, ID, 83844-1010</wicri:regionArea>
<wicri:noRegion>83844-1010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuhl, Joseph C" sort="Kuhl, Joseph C" uniqKey="Kuhl J" first="Joseph C" last="Kuhl">Joseph C. Kuhl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333</wicri:regionArea>
<wicri:noRegion>83844-2333</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Fangming" sort="Xiao, Fangming" uniqKey="Xiao F" first="Fangming" last="Xiao">Fangming Xiao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333</wicri:regionArea>
<wicri:noRegion>83844-2333</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dandurand, Louise Marie" sort="Dandurand, Louise Marie" uniqKey="Dandurand L" first="Louise-Marie" last="Dandurand">Louise-Marie Dandurand</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, 83844-2329, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, 83844-2329</wicri:regionArea>
<wicri:noRegion>83844-2329</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Caplan, Allan B" sort="Caplan, Allan B" uniqKey="Caplan A" first="Allan B" last="Caplan">Allan B. Caplan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333</wicri:regionArea>
<wicri:noRegion>83844-2333</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33016605</idno>
<idno type="pmid">33016605</idno>
<idno type="doi">10.1002/tpg2.20016</idno>
<idno type="wicri:Area/Main/Corpus">000077</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000077</idno>
<idno type="wicri:Area/Main/Curation">000077</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000077</idno>
<idno type="wicri:Area/Main/Exploration">000077</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Initial responses of the trap-crop, Solanum sisymbriifolium, to Globodera pallida invasions.</title>
<author>
<name sortKey="Wixom, Alexander Q" sort="Wixom, Alexander Q" uniqKey="Wixom A" first="Alexander Q" last="Wixom">Alexander Q. Wixom</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333</wicri:regionArea>
<wicri:noRegion>83844-2333</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Casavant, N Carol" sort="Casavant, N Carol" uniqKey="Casavant N" first="N Carol" last="Casavant">N Carol Casavant</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333</wicri:regionArea>
<wicri:noRegion>83844-2333</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sonnen, Timothy J" sort="Sonnen, Timothy J" uniqKey="Sonnen T" first="Timothy J" last="Sonnen">Timothy J. Sonnen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science, Moscow, ID, 83844-1010, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Moscow, ID, 83844-1010</wicri:regionArea>
<wicri:noRegion>83844-1010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuhl, Joseph C" sort="Kuhl, Joseph C" uniqKey="Kuhl J" first="Joseph C" last="Kuhl">Joseph C. Kuhl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333</wicri:regionArea>
<wicri:noRegion>83844-2333</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Fangming" sort="Xiao, Fangming" uniqKey="Xiao F" first="Fangming" last="Xiao">Fangming Xiao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333</wicri:regionArea>
<wicri:noRegion>83844-2333</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dandurand, Louise Marie" sort="Dandurand, Louise Marie" uniqKey="Dandurand L" first="Louise-Marie" last="Dandurand">Louise-Marie Dandurand</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, 83844-2329, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, 83844-2329</wicri:regionArea>
<wicri:noRegion>83844-2329</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Caplan, Allan B" sort="Caplan, Allan B" uniqKey="Caplan A" first="Allan B" last="Caplan">Allan B. Caplan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333</wicri:regionArea>
<wicri:noRegion>83844-2333</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The plant genome</title>
<idno type="eISSN">1940-3372</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Many researchers today are looking for mechanisms underlying plant defenses against nematodes by identifying differentially expressed genes in domesticated hosts. In order to provide a different perspective, we analyzed the root transcriptome of an undomesticated non-host species, Solanum sisymbriifolium Lamark (SSI) before and after Globodera pallida infection. Utilizing RNAseq analyses, we identified changes in the expression of 277 transcripts. Many of these genes were not annotated; however, the annotated set included peroxidases, reactive oxygen species-producing proteins, and regulators of cell death. Importantly, 60% of the nematode-responsive genes did not respond to physical damage to root tissues, or to exogenous treatments with either salicylic acid or methyl jasmonate. Based on this, we speculate that the majority of changes in SSI gene expression were promoted by either nematode effectors, pathogen-associated molecular patterns (PAMPs), or by exposure to untested endogenous signaling molecules such as ethylene, or by exposure to multiple stimuli. This study incorporates our findings into a model that accounts for part of this plant's unusual resistance to nematodes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">33016605</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1940-3372</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>The plant genome</Title>
<ISOAbbreviation>Plant Genome</ISOAbbreviation>
</Journal>
<ArticleTitle>Initial responses of the trap-crop, Solanum sisymbriifolium, to Globodera pallida invasions.</ArticleTitle>
<Pagination>
<MedlinePgn>e20016</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/tpg2.20016</ELocationID>
<Abstract>
<AbstractText>Many researchers today are looking for mechanisms underlying plant defenses against nematodes by identifying differentially expressed genes in domesticated hosts. In order to provide a different perspective, we analyzed the root transcriptome of an undomesticated non-host species, Solanum sisymbriifolium Lamark (SSI) before and after Globodera pallida infection. Utilizing RNAseq analyses, we identified changes in the expression of 277 transcripts. Many of these genes were not annotated; however, the annotated set included peroxidases, reactive oxygen species-producing proteins, and regulators of cell death. Importantly, 60% of the nematode-responsive genes did not respond to physical damage to root tissues, or to exogenous treatments with either salicylic acid or methyl jasmonate. Based on this, we speculate that the majority of changes in SSI gene expression were promoted by either nematode effectors, pathogen-associated molecular patterns (PAMPs), or by exposure to untested endogenous signaling molecules such as ethylene, or by exposure to multiple stimuli. This study incorporates our findings into a model that accounts for part of this plant's unusual resistance to nematodes.</AbstractText>
<CopyrightInformation>© 2020 The Authors. The Plant Genome published by Wiley Periodicals, Inc. on behalf of Crop Science Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wixom</LastName>
<ForeName>Alexander Q</ForeName>
<Initials>AQ</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-2982-7303</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Casavant</LastName>
<ForeName>N Carol</ForeName>
<Initials>NC</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sonnen</LastName>
<ForeName>Timothy J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science, Moscow, ID, 83844-1010, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuhl</LastName>
<ForeName>Joseph C</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Fangming</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dandurand</LastName>
<ForeName>Louise-Marie</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, 83844-2329, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Caplan</LastName>
<ForeName>Allan B</ForeName>
<Initials>AB</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-1139-3124</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Northwest Potato Consortium</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Idaho Potato Commission</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>USDA-APHIS Farm Bill 10201, 10007</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Genome</MedlineTA>
<NlmUniqueID>101273919</NlmUniqueID>
<ISSNLinking>1940-3372</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>8</Hour>
<Minute>44</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33016605</ArticleId>
<ArticleId IdType="doi">10.1002/tpg2.20016</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Ali, S., Magne, M., Chen, S., Cote, O., Stare, B. G., Obradovic, N., … Moffett, P. (2015). Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses. Plos One, 10, e0115042.</Citation>
</Reference>
<Reference>
<Citation>Bagalwa, J. J., Voutquenne-Nazabadioko, L., Sayagh, C., & Bashwira, A. S. (2010). Evaluation of the biological activity of the molluscicidal fraction of Solanum sisymbriifolium against non target organisms. Fitoterapia, 81, 767-771.</Citation>
</Reference>
<Reference>
<Citation>Ben-Tov, D., Idan-Molakandov, A., Hugger, A., Ben-Shlush, I., Gunl, M., Yang, B., … Harpaz-Saad, S. (2018). The role of COBRA-LIKE 2 function, as part of the complex network of interacting pathways regulating Arabidopsis seed mucilage polysaccharide matrix organization. Plant Journal, 94, 497-512.</Citation>
</Reference>
<Reference>
<Citation>Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114-2120.</Citation>
</Reference>
<Reference>
<Citation>Breen, S., Williams, S. J., Outram, M., Kobe, B., & Solomon, P. S. (2017). Emerging insights into the functions of pathogenesis-related protein. Trends in Plant Science, 22, 871-879.</Citation>
</Reference>
<Reference>
<Citation>Bushnell, B. (2016). BBMap short-read aligner, and other bioinformatics tools. Retrieved from http://sourceforgenet/projects/bbmap/.</Citation>
</Reference>
<Reference>
<Citation>Casavant, N. C., Kuhl, J. C., Xiao, F., Caplan, A. B., & Dandurand, L. M. (2017). Assessment of Globodera pallida RNA extracted from Solanum roots. Journal of Nematology, 49, 12-20.</Citation>
</Reference>
<Reference>
<Citation>Chen, M., Ji, M., Wen, B., Liu, L., Li, S., Chen, X., … Li, L. (2016). GOLDEN 2-LIKE transcription factors of plants. Frontiers in Plant Science, 7, 1509.</Citation>
</Reference>
<Reference>
<Citation>Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signaling & Behavior, 4, 493-496.</Citation>
</Reference>
<Reference>
<Citation>Choi, H. W., Kim, N. H., Lee, Y. K., & Hwang, B. K. (2013). The pepper extracellular xyloglucan-specific endo-beta-1,4-glucanase inhibitor protein gene, CaXEGIP1, is required for plant cell death and defense responses. Plant Physiology, 161, 384-396.</Citation>
</Reference>
<Reference>
<Citation>Dandurand, L. M., & Knudsen, G. R. (2016). Effect of the trap crop Solanum sisymbriifolium and two biocontrol fungi on reproduction of the potato cyst nematode, Globodera pallida. Annals of Applied Biology, 169(2), 180-189.</Citation>
</Reference>
<Reference>
<Citation>de Almeida Engler, J., Van Poucke, K., Karimi, M., De Groodt, R., Gheysen, G., Engler, G., & Gheysen, G. (2004). Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots. Plant Journal, 38, 12-26.</Citation>
</Reference>
<Reference>
<Citation>De Coninck, B., Timmermans, P., Vos, C., Cammue, B. P., & Kazan, K. (2015). What lies beneath: Below ground defense strategies in plants. Trends in Plant Science, 20, 91-101.</Citation>
</Reference>
<Reference>
<Citation>De Meutter, J., Tytgat, T., Witters, E., Gheysen, G., Van Onckelen, H., & Gheysen, G. (2003). Identification of cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita. Molecular Plant Pathology, 4, 271-277.</Citation>
</Reference>
<Reference>
<Citation>Diaz-Granados, A., Petrescu, A. J., Goverse, A., & Smant, G. (2016). SPRYSEC Effectors: A versatile protein-binding platform to disrupt plant innate immunity. Frontiers in Plant Science, 7, 1575.</Citation>
</Reference>
<Reference>
<Citation>Dowd, C. D., Chronis, D., Radakovic, Z. S., Siddique, S., Schmulling, T., Werner, T., … Mitchum, M. G. (2017). Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes. Plant Journal, 92, 211-228.</Citation>
</Reference>
<Reference>
<Citation>Dynowski, M., Schaaf, G., Loque, D., Moran, O., & Ludewig, U. (2008). Plant plasma membrane water channels conduct the signaling molecule H2O2. Biochemical Journal, 414, 53-61.</Citation>
</Reference>
<Reference>
<Citation>Feng, W., Kita, D., Peaucelle, A., Cartwright, H. N., Doan, V., Duan, Q., … Schmitz-Thom, I. (2018). The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Current Biology, 28, 666-675 e665.</Citation>
</Reference>
<Reference>
<Citation>Ferrari, S., Plotnikova, J. M., De Lorenzo, G., & Ausubel, F. M. (2003). Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant Journal, 35, 193-205.</Citation>
</Reference>
<Reference>
<Citation>Fujimoto, T., Tomitaka, Y., Abe, H., Tsuda, S., Futai, K., & Mizukubo, T. (2011). Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate. Journal of Plant Physiology, 168, 1084-1097.</Citation>
</Reference>
<Reference>
<Citation>Goverse, A., Overmars, H., Engelbertink, J., Schots, A., Bakker, J., & Helder, J. (2000). Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin. Molecular Plant-Microbe Interactions, 13, 1121-1129.</Citation>
</Reference>
<Reference>
<Citation>Grunewald, W., Karimi, M., Wieczorek, K., Van de Cappelle, E., Wischnitzki, E., Grundler, F., … Gheysen, G. (2008). A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiology, 148, 358-368.</Citation>
</Reference>
<Reference>
<Citation>Guo, X., Wang, J., Gardner, M., Fukuda, H., Kondo, Y., Etchells, J. P., … Mitchum, M. G. (2017). Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation. Plos Pathogens, 13, e1006142.</Citation>
</Reference>
<Reference>
<Citation>Hillmer, R. A., Tsuda, K., Rallapalli, G., Asai, S., Truman, W., Papke, M. D., … Katagiri, F. (2017). The highly buffered Arabidopsis immune signaling network conceals the functions of its components. Plos Genetics, 13, e1006639.</Citation>
</Reference>
<Reference>
<Citation>Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., & Okada, K. (2001). The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell, 13, 2191-2209.</Citation>
</Reference>
<Reference>
<Citation>John, M. E., & Crow, L. J. (1992). Gene expression in cotton (Gossypium hirsutum L.) fiber: Cloning of the mRNAs. Proceedings of the National Academy of Sciences USA, 89, 5769-5773.</Citation>
</Reference>
<Reference>
<Citation>Johnson, K. L., Jones, B. J., Bacic, A., & Schultz, C. J. (2003). The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiology, 133, 1911-1925.</Citation>
</Reference>
<Reference>
<Citation>Juvale, P. S., & Baum, T. J. (2018). “Cyst-ained” research into Heterodera parasitism. Plos Pathogens, 14, e1006791.</Citation>
</Reference>
<Reference>
<Citation>Kammerhofer, N., Radakovic, Z., Regis, J. M., Dobrev, P., Vankova, R., Grundler, F. M., … Wieczorek, K. (2015). Role of stress-related hormones in plant defense during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. New Phytologist, 207, 778-789.</Citation>
</Reference>
<Reference>
<Citation>Kliebenstein, D. J., Lambrix, V. M., Reichelt, M., Gershenzon, J., & Mitchell-Olds, T. (2001). Gene duplication in the diversification of secondary metabolism: Tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell, 13, 681-693.</Citation>
</Reference>
<Reference>
<Citation>Kooliyottil, R., Dandurand, L. M., Kuhl, J. C., Caplan, A., Xiao, F., Mimee, B., & Lafond-Lapalme, J. (2019). Transcriptome analysis of Globodera pallida from the susceptible host Solanum tuberosum or the resistant plant Solanum sisymbriifolium. Scientific Reports, 9, 13256.</Citation>
</Reference>
<Reference>
<Citation>Laluk, K., & Mengiste, T. (2010). Necrotroph attacks on plants: Wanton destruction or covert extortion? The Arabidopsis Book (Vol. 8, pp. e0136). American Society of Plant Biologists.</Citation>
</Reference>
<Reference>
<Citation>Lei, Y., Liu, K., Hou, L., Ding, L., Li, Y., & Liu, L. (2017). Small chaperons and autophagy protected neurons from necrotic cell death. Scientific Reports, 7, 5650.</Citation>
</Reference>
<Reference>
<Citation>Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., & Pfister, H. (2014). UpSet: Visualization of intersecting sets. IEEE Transactions on Visualization and Computer Graphics, 20, 1983-1992.</Citation>
</Reference>
<Reference>
<Citation>Li, B., Jiang, S., Yu, X., Cheng, C., Chen, S., Cheng, Y., … Shan, L. (2015). Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity. Plant Cell, 27, 839-856.</Citation>
</Reference>
<Reference>
<Citation>Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589-595.</Citation>
</Reference>
<Reference>
<Citation>Li, Y., Pennington, B. O., & Hua, J. (2009). Multiple R-like genes are negatively regulated by BON1 and BON3 in Arabidopsis. Molecular Plant-Microbe Interactions, 22, 840-848.</Citation>
</Reference>
<Reference>
<Citation>Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.</Citation>
</Reference>
<Reference>
<Citation>Manosalva, P., Manohar, M., von Reuss, S. H., Chen, S., Koch, A., Kaplan, F., … Kogel, K. H. (2015). Conserved nematode signaling molecules elicit plant defenses and pathogen resistance. Nature communications, 6, 7795.</Citation>
</Reference>
<Reference>
<Citation>Marra, B. M., Souza, D. S. L., Aguiar, J. N., Firmino, A. A. P., Sarto, R. P. D., Silva, F. B., … Martins-de-Sa, C. (2009). Protective effects of a cysteine proteinase propeptide expressed in transgenic soybean roots. Peptides, 30, 825-831.</Citation>
</Reference>
<Reference>
<Citation>Matthews, B. F., Beard, H., MacDonald, M. H., Kabir, S., Youssef, R. M., Hosseini, P., & Brewer, E. (2013). Engineered resistance and hyper susceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode. Planta, 237, 1337-1357.</Citation>
</Reference>
<Reference>
<Citation>McLean, M. D., Yevtushenko, D. P., Deschene, A., Van Cauwenberghe, O. R., Makhmoudova, A., Potter, J. W., … Shelp, B. J. (2003). Overexpression of glutamate decarboxylase in transgenic tobacco plants confers resistance to the northern root-knot nematode. Molecular Breeding, 11, 277-285.</Citation>
</Reference>
<Reference>
<Citation>Mei, Y., Wright, K. M., Haegeman, A., Bauters, L., Diaz-Granados, A., Goverse, A., … Mantelin, S. (2018). The Globodera pallida SPRYSEC effector GpSPRY-414-2 that suppresses plant defenses targets a regulatory component of the dynamic microtubule network. Frontiers in Plant Science, 9, 1019.</Citation>
</Reference>
<Reference>
<Citation>Mendy, B., Wang'ombe, M. W., Radakovic, Z. S., Holbein, J., Ilyas, M., Chopra, D., … Siddique, S. (2017). Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes. Plos Pathogens, 13, e1006284.</Citation>
</Reference>
<Reference>
<Citation>Niebel, A., De Almeida Engler, J., Tire, C., Engler, G., Van Montagu, M., & Gheysen, G. (1993). Induction patterns of an extensin gene in tobacco upon nematode infection. The Plant Cell, 5, 1697-1710.</Citation>
</Reference>
<Reference>
<Citation>Palomares-Rius, J. E., Escobar, C., Cabrera, J., Vovlas, A., & Castillo, P. (2017). Anatomical alterations in plant tissues induced by plant-parasitic nematodes. Frontiers in Plant Science, 8, 1987.</Citation>
</Reference>
<Reference>
<Citation>Panikashvili, D., Savaldi-Goldstein, S., Mandel, T., Yifhar, T., Franke, R. B., Hofer, R., … Aharoni, A. (2007). The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiology, 145, 1345-1360.</Citation>
</Reference>
<Reference>
<Citation>Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods, 14, 417-419.</Citation>
</Reference>
<Reference>
<Citation>Penninckx, I. A., Thomma, B. P., Buchala, A., Metraux, J. P., & Broekaert, W. F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell, 10, 2103-2113.</Citation>
</Reference>
<Reference>
<Citation>Pestana, M., Rodrigues, M., Teixeira, L., Abrantes, I. d. O., Gouveira, M., & Cordeiro, N. (2014). In vitro evaluation of nematicidal properties of Solanum sisymbriifolium and S. nigrum extracts on Pratylenchus goodeyi. Nematology, 16, 41-51.</Citation>
</Reference>
<Reference>
<Citation>Podlesakova, K., Ugena, L., Spichal, L., Dolezal, K., & De Diego, N. (2018). Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. Nature Biotechnology, 48, 53-65.</Citation>
</Reference>
<Reference>
<Citation>Postma, W. J., Slootweg, E. J., Rehman, S., Finkers-Tomczak, A., Tytgat, T. O., van Gelderen, K., … van Schaik, C. (2012). The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants. Plant Physiology, 160, 944-954.</Citation>
</Reference>
<Reference>
<Citation>Robert-Seilaniantz, A., Grant, M., & Jones, J. D. (2011). Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49, 317-343.</Citation>
</Reference>
<Reference>
<Citation>Sasaki-Crawley, A. (2012). Signaling and behavior of Globodera pallida in the rhizosphere of the trap crop Solanum sisymbriifolium. England: University of Plymouth.</Citation>
</Reference>
<Reference>
<Citation>Scholte, K. (2000). Screening of non-tuber bearing Solanaceae for resistance to and induction of juvenile hatch of potato cyst nematodes and their potential for trap cropping. Annals of Applied Biology, 136, 239-246.</Citation>
</Reference>
<Reference>
<Citation>Scholte, K., & Vos, J. (2000). Effects of potential trap crops and planting date on soil infestation with potato cyst nematodes and root-knot nematodes. Annals of Applied Biology, 137, 153-164.</Citation>
</Reference>
<Reference>
<Citation>Schon, M., Toller, A., Diezel, C., Roth, C., Westphal, L., Wiermer, M., & Somssich, I. E. (2013). Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Molecular Plant-Microbe Interactions, 26, 758-767.</Citation>
</Reference>
<Reference>
<Citation>Seo, S., Mitsuhara, I., Feng, J., Iwai, T., Hasegawa, M., & Ohashi, Y. (2011). Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiology, 155, 502-514.</Citation>
</Reference>
<Reference>
<Citation>Shah, S. J., Anjam, M. S., Mendy, B., Anwer, M. A., Habash, S. S., Lozano-Torres, J. L., … Siddique, S. (2017). Damage-associated responses of the host contribute to defense against cyst nematodes but not root-knot nematodes. Journal of Experimental Botany, 68, 5949-5960.</Citation>
</Reference>
<Reference>
<Citation>Siddique, S., Radakovic, Z. S., De La Torre, C. M., Chronis, D., Novak, O., Ramireddy, E., … Gutbrod, P. (2015). A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. Proceedings of the National Academy of Sciences USA, 112, 12669-12674.</Citation>
</Reference>
<Reference>
<Citation>Song, L. X., Xu, X. C., Wang, F. N., Wang, Y., Xia, X. J., Shi, K., … Yu, J. Q. (2018). Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOG-dependent activation of MAPKs in tomato. Plant, Cell and Environment, 41, 1113-1125.</Citation>
</Reference>
<Reference>
<Citation>Szakasits, D., Heinen, P., Wieczorek, K., Hofmann, J., Wagner, F., Kreil, D. P., … Bohlmann, H. (2009). The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in Arabidopsis roots. Plant Journal, 57, 771-784.</Citation>
</Reference>
<Reference>
<Citation>Tadege, M., Bucher, M., Sta¨hli, W., Suter, M., Dupuis, I., & Kuhlemeier, C. (1998). Activation of plant defense responses and sugar efflux by expression of pyruvate decarboxylase in potato leaves. Plant Journal, 16, 661-667.</Citation>
</Reference>
<Reference>
<Citation>Team, R. C. (2018). R: A language and environment for statistical computing. https://wwwR-projectorg.</Citation>
</Reference>
<Reference>
<Citation>Thaler, J. S., Humphrey, P. T., & Whiteman, N. K. (2012). Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science, 17, 260-270.</Citation>
</Reference>
<Reference>
<Citation>Thomma, B. P., Nelissen, I., Eggermont, K., & Broekaert, W. F. (1999). Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant Journal, 19, 163-171.</Citation>
</Reference>
<Reference>
<Citation>Thorpe, P., Mantelin, S., Cock, P. J., Blok, V. C., Coke, M. C., Eves-van den Akker, S., … Reid, A. J. (2014). Genomic characterization of the effector complement of the potato cyst nematode Globodera pallida. Bmc Genomics [Electronic Resource], 15, 923.</Citation>
</Reference>
<Reference>
<Citation>Uehara, T., Sugiyama, S., Matsuura, H., Arie, T., & Masuta, C. (2010). Resistant and susceptible responses in tomato to cyst nematode are differentially regulated by salicylic acid. Plant & Cell Physiology, 51, 1524-1536.</Citation>
</Reference>
<Reference>
<Citation>Urwin, P. E., Troth, K. M., Zubko, E. I., & Atkinson, H. J. (2001). Effective transgenic resistance to Globodera pallida in potato field trials. Molecular Breeding, 8, 95-101.</Citation>
</Reference>
<Reference>
<Citation>Vanholme, B., VanThuyne, W., Vanhouteghem, K., DeMeutter, J., Cannoot, B., & Gheysen, G. (2007). Molecular characterization and functional importance of pectate lyase secreted by the cyst nematode Heterodera schachtii. Molecular Plant Pathology, 8, 267-278.</Citation>
</Reference>
<Reference>
<Citation>Watanabe, N., & Lam, E. (2006). Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant Journal, 45, 884-894.</Citation>
</Reference>
<Reference>
<Citation>Wingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 7, 1338.</Citation>
</Reference>
<Reference>
<Citation>Wixom, A. Q., Casavant, N. C., Kuhl, J. C., Xiao, F., Dandurand, L.-M., & Caplan, A. (2018a). Solanum sisymbriifolium plants become more recalcitrant to Agrobacterium transfection as they age. Physiological and Molecular Plant Pathology, 102, 209-218.</Citation>
</Reference>
<Reference>
<Citation>Wixom, A. Q., Casavant, N. C., Kuhl, J. C., Xiao, F., Dandurand, L. M., & Caplan, A. B. (2018b). Assessment of an organ-specific de novo transcriptome of the nematode trap-crop, Solanum sisymbriifolium. G3 (Bethesda), 8, 2135-2143.</Citation>
</Reference>
<Reference>
<Citation>Wubben, M. J., Jin, J., & Baum, T. J. (2008). Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. Molecular Plant-Microbe Interactions, 21, 424-432.</Citation>
</Reference>
<Reference>
<Citation>Yang, S., Yang, H., Grisafi, P., Sanchatjate, S., Fink, G. R., Sun, Q., & Hua, J. (2006). The BON/CPN gene family represses cell death and promotes cell growth in Arabidopsis. Plant Journal, 45, 166-179.</Citation>
</Reference>
<Reference>
<Citation>Yang, W., Devaiah, S. P., Pan, X., Isaac, G., Welti, R., & Wang, X. (2007). AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. Journal of Biological Chemistry, 282, 18116-18128.</Citation>
</Reference>
<Reference>
<Citation>Yin, Y., Qin, K., Song, X., Zhang, Q., Zhou, Y., Xia, X., & Yu, J. (2018). BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinases-mediated reactive oxygen species signaling in tomato. Plant & Cell Physiology, 59(11), 2239-2254.</Citation>
</Reference>
<Reference>
<Citation>Yu, D., Liu, Y., Fan, B., Klessig, D. F., & Chen, Z. (1997). Is the high basal level of salicylic acid important for disease resistance in potato? Plant Physiology, 115, 343-349.</Citation>
</Reference>
<Reference>
<Citation>Zhang, Y., Zhao, L., Zhao, J., Li, Y., Wang, J., Guo, R., … Zhang, K. (2017). S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis. Plant Physiology, 175, 1082-1093.</Citation>
</Reference>
<Reference>
<Citation>Zhu, Z., & Lee, B. (2015). Friends or foes: New insights in jasmonate and ethylene co-actions. Plant & Cell Physiology, 56, 414-420.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Wixom, Alexander Q" sort="Wixom, Alexander Q" uniqKey="Wixom A" first="Alexander Q" last="Wixom">Alexander Q. Wixom</name>
</noRegion>
<name sortKey="Caplan, Allan B" sort="Caplan, Allan B" uniqKey="Caplan A" first="Allan B" last="Caplan">Allan B. Caplan</name>
<name sortKey="Casavant, N Carol" sort="Casavant, N Carol" uniqKey="Casavant N" first="N Carol" last="Casavant">N Carol Casavant</name>
<name sortKey="Dandurand, Louise Marie" sort="Dandurand, Louise Marie" uniqKey="Dandurand L" first="Louise-Marie" last="Dandurand">Louise-Marie Dandurand</name>
<name sortKey="Kuhl, Joseph C" sort="Kuhl, Joseph C" uniqKey="Kuhl J" first="Joseph C" last="Kuhl">Joseph C. Kuhl</name>
<name sortKey="Sonnen, Timothy J" sort="Sonnen, Timothy J" uniqKey="Sonnen T" first="Timothy J" last="Sonnen">Timothy J. Sonnen</name>
<name sortKey="Xiao, Fangming" sort="Xiao, Fangming" uniqKey="Xiao F" first="Fangming" last="Xiao">Fangming Xiao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000128 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000128 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33016605
   |texte=   Initial responses of the trap-crop, Solanum sisymbriifolium, to Globodera pallida invasions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33016605" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020